Abstract:Recent advances in large language models have highlighted their potential for personalized recommendation, where accurately capturing user preferences remains a key challenge. Leveraging their strong reasoning and generalization capabilities, LLMs offer new opportunities for modeling long-term user behavior. To systematically evaluate this, we introduce ALPBench, a Benchmark for Attribution-level Long-term Personal Behavior Understanding. Unlike item-focused benchmarks, ALPBench predicts user-interested attribute combinations, enabling ground-truth evaluation even for newly introduced items. It models preferences from long-term historical behaviors rather than users' explicitly expressed requests, better reflecting enduring interests. User histories are represented as natural language sequences, allowing interpretable, reasoning-based personalization. ALPBench enables fine-grained evaluation of personalization by focusing on the prediction of attribute combinations task that remains highly challenging for current LLMs due to the need to capture complex interactions among multiple attributes and reason over long-term user behavior sequences.
Abstract:Recent work shows that linear models can outperform several transformer models in long-term time-series forecasting (TSF). However, instead of explicitly performing temporal interaction through self-attention, linear models implicitly perform it based on stacked MLP structures, which may be insufficient in capturing the complex temporal dependencies and their performance still has potential for improvement. To this end, we propose a Lightweight Sparse Interaction Network (LSINet) for TSF task. Inspired by the sparsity of self-attention, we propose a Multihead Sparse Interaction Mechanism (MSIM). Different from self-attention, MSIM learns the important connections between time steps through sparsity-induced Bernoulli distribution to capture temporal dependencies for TSF. The sparsity is ensured by the proposed self-adaptive regularization loss. Moreover, we observe the shareability of temporal interactions and propose to perform Shared Interaction Learning (SIL) for MSIM to further enhance efficiency and improve convergence. LSINet is a linear model comprising only MLP structures with low overhead and equipped with explicit temporal interaction mechanisms. Extensive experiments on public datasets show that LSINet achieves both higher accuracy and better efficiency than advanced linear models and transformer models in TSF tasks. The code is available at the link https://github.com/Meteor-Stars/LSINet.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:Time series generation (TSG) is widely used across domains, yet most existing methods assume regular sampling and fixed output resolutions. These assumptions are often violated in practice, where observations are irregular and sparse, while downstream applications require continuous and high-resolution TS. Although Neural Controlled Differential Equation (NCDE) is promising for modeling irregular TS, it is constrained by a single dynamics function, tightly coupled optimization, and limited ability to adapt learned dynamics to newly generated samples from the generative model. We propose Diff-MN, a continuous TSG framework that enhances NCDE with a Mixture-of-Experts (MoE) dynamics function and a decoupled architectural design for dynamics-focused training. To further enable NCDE to generalize to newly generated samples, Diff-MN employs a diffusion model to parameterize the NCDE temporal dynamics parameters (MoE weights), i.e., jointly learn the distribution of TS data and MoE weights. This design allows sample-specific NCDE parameters to be generated for continuous TS generation. Experiments on ten public and synthetic datasets demonstrate that Diff-MN consistently outperforms strong baselines on both irregular-to-regular and irregular-to-continuous TSG tasks. The code is available at the link https://github.com/microsoft/TimeCraft/tree/main/Diff-MN.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:Time series generation (TSG) plays a critical role in a wide range of domains, such as healthcare. However, most existing methods assume regularly sampled observations and fixed output resolutions, which are often misaligned with real-world scenarios where data are irregularly sampled and sparsely observed. This mismatch is particularly problematic in applications such as clinical monitoring, where irregular measurements must support downstream tasks requiring continuous and high-resolution time series. Neural Controlled Differential Equations (NCDEs) have shown strong potential for modeling irregular time series, yet they still face challenges in capturing complex dynamic temporal patterns and supporting continuous TSG. To address these limitations, we propose MN-TSG, a novel framework that explores Mixture-of-Experts (MoE)-based NCDEs and integrates them with existing TSG models for irregular and continuous generation tasks. The core of MN-TSG lies in a MoE-NCDE architecture with dynamically parameterized expert functions and a decoupled design that facilitates more effective optimization of MoE dynamics. Furthermore, we leverage existing TSG models to learn the joint distribution over the mixture of experts and the generated time series. This enables the framework not only to generate new samples, but also to produce appropriate expert configurations tailored to each sample, thereby supporting refined continuous TSG. Extensive experiments on ten public and synthetic datasets demonstrate the effectiveness of MN-TSG, consistently outperforming strong TSG baselines on both irregular-to-regular and irregular-to-continuous generation tasks.
Abstract:Change Detection (CD) is a fundamental task in remote sensing. It monitors the evolution of land cover over time. Based on this, Open-Vocabulary Change Detection (OVCD) introduces a new requirement. It aims to reduce the reliance on predefined categories. Existing training-free OVCD methods mostly use CLIP to identify categories. These methods also need extra models like DINO to extract features. However, combining different models often causes problems in matching features and makes the system unstable. Recently, the Segment Anything Model 3 (SAM 3) is introduced. It integrates segmentation and identification capabilities within one promptable model, which offers new possibilities for the OVCD task. In this paper, we propose OmniOVCD, a standalone framework designed for OVCD. By leveraging the decoupled output heads of SAM 3, we propose a Synergistic Fusion to Instance Decoupling (SFID) strategy. SFID first fuses the semantic, instance, and presence outputs of SAM 3 to construct land-cover masks, and then decomposes them into individual instance masks for change comparison. This design preserves high accuracy in category recognition and maintains instance-level consistency across images. As a result, the model can generate accurate change masks. Experiments on four public benchmarks (LEVIR-CD, WHU-CD, S2Looking, and SECOND) demonstrate SOTA performance, achieving IoU scores of 67.2, 66.5, 24.5, and 27.1 (class-average), respectively, surpassing all previous methods.
Abstract:Crime disrupts societal stability, making law essential for balance. In multidefendant cases, assigning responsibility is complex and challenges fairness, requiring precise role differentiation. However, judicial phrasing often obscures the roles of the defendants, hindering effective AI-driven analyses. To address this issue, we incorporate sentencing logic into a pretrained Transformer encoder framework to enhance the intelligent assistance in multidefendant cases while ensuring legal interpretability. Within this framework an oriented masking mechanism clarifies roles and a comparative data construction strategy improves the model's sensitivity to culpability distinctions between principals and accomplices. Predicted guilt labels are further incorporated into a regression model through broadcasting, consolidating crime descriptions and court views. Our proposed masked multistage inference (MMSI) framework, evaluated on the custom IMLJP dataset for intentional injury cases, achieves significant accuracy improvements, outperforming baselines in role-based culpability differentiation. This work offers a robust solution for enhancing intelligent judicial systems, with publicly code available.
Abstract:Existing 1D visual tokenizers for autoregressive (AR) generation largely follow the design principles of language modeling, as they are built directly upon transformers whose priors originate in language, yielding single-hierarchy latent tokens and treating visual data as flat sequential token streams. However, this language-like formulation overlooks key properties of vision, particularly the hierarchical and residual network designs that have long been essential for convergence and efficiency in visual models. To bring "vision" back to vision, we propose the Residual Tokenizer (ResTok), a 1D visual tokenizer that builds hierarchical residuals for both image tokens and latent tokens. The hierarchical representations obtained through progressively merging enable cross-level feature fusion at each layer, substantially enhancing representational capacity. Meanwhile, the semantic residuals between hierarchies prevent information overlap, yielding more concentrated latent distributions that are easier for AR modeling. Cross-level bindings consequently emerge without any explicit constraints. To accelerate the generation process, we further introduce a hierarchical AR generator that substantially reduces sampling steps by predicting an entire level of latent tokens at once rather than generating them strictly token-by-token. Extensive experiments demonstrate that restoring hierarchical residual priors in visual tokenization significantly improves AR image generation, achieving a gFID of 2.34 on ImageNet-256 with only 9 sampling steps. Code is available at https://github.com/Kwai-Kolors/ResTok.
Abstract:All-in-One Image Restoration (AiOIR) has advanced significantly, offering promising solutions for complex real-world degradations. However, most existing approaches rely heavily on degradation-specific representations, often resulting in oversmoothing and artifacts. To address this, we propose ClearAIR, a novel AiOIR framework inspired by Human Visual Perception (HVP) and designed with a hierarchical, coarse-to-fine restoration strategy. First, leveraging the global priority of early HVP, we employ a Multimodal Large Language Model (MLLM)-based Image Quality Assessment (IQA) model for overall evaluation. Unlike conventional IQA, our method integrates cross-modal understanding to more accurately characterize complex, composite degradations. Building upon this overall assessment, we then introduce a region awareness and task recognition pipeline. A semantic cross-attention, leveraging semantic guidance unit, first produces coarse semantic prompts. Guided by this regional context, a degradation-aware module implicitly captures region-specific degradation characteristics, enabling more precise local restoration. Finally, to recover fine details, we propose an internal clue reuse mechanism. It operates in a self-supervised manner to mine and leverage the intrinsic information of the image itself, substantially enhancing detail restoration. Experimental results show that ClearAIR achieves superior performance across diverse synthetic and real-world datasets.